PLANT METABOLISM

Metabolism is the set of life-sustaining chemical transformations within the plant cell. On one hand, primary metabolism comprises all metabolic pathways that are essential to the plant's survival, generating compounds (metabolites) that are directly involved in the growth and development of the organism. On the other hand, secondary metabolism produces a large number of specialized compounds that are not essential to the functioning of the plant but are required for the plant to survive in its environment. Secondary plant metabolites are useful in the long term, often for defence purposes, they give plants characteristics such as colour, are also used in communication, signalling and regulation of primary metabolic pathways (e.g. phytohormones).

Plant metabolism

Plant metabolism

 Our research addresses several aspects of the metabolism of plants, in particular the response to altered environmental conditions (such as abiotic/biotic stress, nutrient starvation), using a wide range of techniques from molecular biology, next generation sequencing, biochemistry, phenotyping techniques to MS analytics.

 

Projects

 

Utilization of plant secondary metabolism for production of high value products in plants

Plant secondary metabolites are essential components of the human diet, utilised as phytomedicines and routinely used as industrial raw materials and high-value fine chemicals. Chemically, secondary metabolites exhibit an enormous diversity and complexity, which makes their industrial chemical synthesis difficult and expensive. Agriculture and horticulture produces large quantities of plant biomass residues as by-products. Utilizing such by-products for extraction of secondary metabolites would lead to added value of crop production. Plants increase the production of secondary metabolites in response to abiotic and biotic stress.

In our BioSC NRW funded project “InducTomE- Induction of secondary metabolites in tomato by-products for extraction and economic evaluation of the model process”, we aim to identify abiotic stress treatments to induce the accumulation of two secondary metabolites (rutin and solanesol) in tomato by-products to high amounts. A conceptual process design is being developed for an extraction process and its economic feasibility is evaluated. In addition, co-induced secondary metabolites are being identified by metabolite profiling and RNAseq analysis and their market entry potential will also be evaluated. As a long-term prospect, the developed process concept will be transferable to other waste streams and metabolites, thereby playing a pivotal role in the successful development of a bioeconomy perspective.

The BMBF funded project „TaReCa - Tailoring of secondary metabolism in horticultural residuals and cascade utilization for a resource efficient production of valuable bioactive compounds“ aims at the development of a tailored cascade utilization of bell pepper residues, to exploit add-on value by combining the production of vegetables with subsequent extraction of valuable plant secondary metabolites (SM). The interdisciplinary project partners aim to explore the potential of tailoring secondary metabolism in residuals from bell pepper production by stresses applied in production greenhouses. The project will focus on the flavonoid cynaroside, which is of interest for the cosmetic, food and pharmaceutical industries due to its antioxidant, antimicrobial and cancer-preventive properties. As many SM have such beneficial properties, leaves and stems from stress-treated bell pepper plants will be screened for additional induced metabolites, followed by analysis of market potential and entry options/barriers as well as investigations on extractability. This generates the potential for the production of bioactive compounds for multiple market segments. The project drives the development of environmentally-friendly, economic extraction and purification processes which will be coupled to a potential utilization of the remaining plant material in a biorefinery to further increase the value chain. The double or even triple utilization of horticultural production chains for food and tailored compounds will generate novel, affordable and economically relevant products for industrial applications.